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Abstract

A systematic approach to the solution of the tensor equation AX+XA=H, where A is symmetric, is presented. It
is based upon the reformulation of the original equation in the form AX=H where A�Aut�1� 1ut�A is the fourth-

order tensor obtained from the square tensor product of the second-order tensors A and 1. It is shown that the
solution X, which is known to be an isotropic function of A and H, can be e�ectively obtained either by providing
explicit formulas for Aÿ1 or by reconverting to the format AX=H the well-known representation formulas for
tensor-valued isotropic functions. The ®nal form of the solution can thus be established a priori by suitably

choosing a set of independent generators for Aÿ1. The coe�cients of the expansion of Aÿ1 with respect to the
assigned generators are then obtained by means of basic composition rules for square tensor products. In this way it
is possible to provide new expressions of the solution as well as to derive the existing ones in a simpler way. Both

three-dimensional and two-dimensional cases are addressed in detail. 7 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Several problems in mechanics of solids require the solution of the tensor equation

AX� XA � H �1�

in the unknown X. We denote by A, X and H second-order tensors on a two- or three-dimensional inner
product space V over the real numbers and we assume A to be symmetric.
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It is immediate to verify that X is symmetric (skew) if and only if H is symmetric (skew). Further, as
®rst observed by Sidoro� (1978), X is an isotropic function of A and H, linear in H.

A comprehensive review of applications of Eq. (1) in continuum mechanics and other branches of
physics and engineering can be found, e.g. in Scheidler (1994). For instance, denoting by U and V the
right and left stretch tensors (Gurtin, 1981), their material time derivatives U

.
and V

.
can be obtained in

turn by solving the tensor equations

U ÇU� ÇUU � ÇC and V ÇV� ÇVV � ÇB

where

C � FtF � U2 and B � FFt � V2

are the right and left Cauchy±Green tensors, F is the deformation gradient and (�)t denotes transposition
of the argument (�).

For the applications in continuum mechanics the tensor A in Eq. (1) is in most cases symmetric
and positive de®nite even if the results shown in the paper will hold true under the less restrictive
hypotheses of a symmetric nonsingular A which does not have two eigenvalues equal and opposite in
sign. Actually, as proved in Section 3, these conditions ensure that Eq. (1) has a unique solution for
every H.

The solution of tensor equations more general than (1) has been addressed by Smith (1966), Jameson
(1968), Muller (1970) and Kucera (1974). They however established quite complicated results that make
ine�cient their applicability to the case at hand.

Simpler results were obtained by Sidoro� (1978) who was the ®rst one to ®nd a direct solution of Eq.
(1), i.e. a solution expressed solely in terms of A and H. Additional expressions of the solution of Eq.
(1) were later found by Dienes (1979) and Guo (1984) for H skew, by Hoger and Carlson (1984) for a
generic H and by Mehrabadi and Nemat-Nasser (1987) who addressed the case of a skew-symmetric
right-hand side of Eq. (1) having a slightly di�erent form.

However the previous authors did not provide a general methodology for solving the tensor Eq. (1).
This was mainly due to the fact that the solution of Eq. (1) was only an intermediate result to be used
in the subsequent developments of the speci®c problem addressed in their paper.

Further, in some cases, the solution was derived by following an indirect approach. Actually, the
original coordinate system, in which A and H were assigned, was transformed to a new system having
axes coincident with the principal directions of the tensor A. As a consequence, the solution obtained in
the new coordinate system had to be converted back to the original one.

For instance, the solution strategy exploited by Sidoro� (1978) and Guo (1984), required the use of
the axial vector associated with a skew H. Only subsequently the solution thus obtained was expressed
as function of H.

Also the path followed by Mehrabadi and Nemat-Nasser (1987) was partly indirect. They actually
obtained the solution of Eq. (1) by repeated use of the Cayley±Hamilton theorem which somehow
prompted the need of a more direct approach.

The only remarkable exception among the previous papers is the contribution by Hoger and Carlson
(1984) whose direct solution has been subsequently used for several applications, see e.g. Hoger (1986)
and Hoger (1993).

Scheidler (1994) was the ®rst one to point out that the solution of Eq. (1) was still worth further
study. He noticed in particular that the solution obtained by Hoger and Carlson (1984) for a generic H
did not naturally yield the simpler solution previously obtained by Sidoro� (1978) and Guo (1984) for
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H skew. To this end Hoger and Carlson were obliged to transform their original solution by using
Rivlin's identities (Rivlin, 1955) for tensor polynomials in two variables.

For these reasons Scheidler (1994) pursued the aim of developing a more general approach which

could provide the direct solution of Eq. (1) in a form speci®cally tailored for each kind of H, either
generic, symmetric or skew.

Remarkably Scheidler considered also the more general tensor equation obtained from Eq. (1) by

replacing the right-hand side with several isotropic functions FFF�A, H), linear in H, and assuming a not
necessarily symmetric A.

The present paper is intended as a further step in the direction indicated by Scheidler. Speci®cally, we

develop an original approach to the direct solution of the tensor Eq. (1) which appears to be simpler
and more e�ective than the ones exploited thus far.

In particular, once some general guidelines are followed, the solution can be given a speci®c form

from the very beginning, thus avoiding the need of devising special tensor identities to a posteriori
process an already available solution.

The proposed approach is based upon the systematic use of the notion of square tensor product

between second-order tensors. Such an operator, which is simply the tensor product of
transformations de®ned in Halmos' textbook (Halmos, 1958), was ®rst introduced in continuum

mechanics by Del Piero (1979) and then used by Podio Guidugli and Virga (1987) and Guo and
Podio Guidugli (1989).

By employing the notion of square tensor product, Eq. (1) can be reformulated in terms of a fourth-
order tensor A mapping X to H so that the solution can be obtained by ®nding an expression for the

inverse of A.

A similar approach was partly adopted by Scheidler (1994) since he extensively used fourth-order
tensors in his paper but he failed to provide explicit expressions for them and to exploit the appealing

features of their algebra.

On the contrary we show that some basic properties and composition rules for the square tensor
product provide the rationale for ®nding the solution of Eq. (1) in the case of H arbitrary, symmetric or

skew.

Actually, the decomposition of Aÿ1 in terms of linearly independent generators can be established
either directly or by appealing to well-known representation theorems for tensor-valued isotropic

functions of tensor arguments. Once Aÿ1 has been expressed as linear combination of independent
fourth-order tensors, the isotropic scalar coe�cients of its representation can be obtained by

straightforward algebraic manipulations.

The ®nal form of the solution X can thus be decided a priori in the sense that it will depend upon the
initial choice of the generators of Aÿ1. Accordingly, if a di�erent expression of X is looked for, it is

more convenient to adopt a di�erent list of generators rather than manipulating an already available
solution.

Such strategy provides in addition a hint of all the possible solutions which can be obtained

since Aÿ1 is basically the linear combination of the square tensor products of 1, A and A2. Actually, the
only possibilities of assuming di�erent generators for Aÿ1 rest in the substitution of any of these second-

order tensors with the expressions resulting from the Cayley±Hamilton theorem.

In order to show the e�ectiveness of the proposed approach, some original solutions are
provided and the solutions already available in the literature are obtained in a simpler way. The

procedure for deriving additional forms of the solution of Eq. (1) is also outlined.

It is also proved that Sidoro�'s approach yields the same solution as the one obtained by
Hoger and Carlson (1984), a circumstance which was only claimed in their paper.

For the sake of completeness both the three- and two-dimensional cases are explicitly considered.
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2. Algebraic preliminaries

Let V be a n-dimensional (n= 2 or n = 3) inner product space over the reals. We denote by Lin the
space of all linear transformations (tensors) on V and by Lin the space of all tensors on Lin.

Given A, B $ Lin, the tensor product A 
 B and the square tensor product A ut�B are the elements of
Lin such that

�A
 B�C � �B � C�A � tr�BtC�A 8C 2 Lin �2�

and

�Aut�B�C � ACBt 8C 2 Lin �3�

While the ®rst de®nition is more standard, the second one is the same as the tensor product of
transformations de®ned by Halmos (1958). Its use in continuum mechanics dates back, to the best of the
author's knowledge, to a paper by Del Piero (1979). Subsequently the square tensor product has been
extensively used by Podio Guidugli and Virga (1987) and Guo and Podio Guidugli (1989).

Notice that, denoting by 1 and I the identity tensors in Lin and Lin respectively, the de®nition (3)
yields

I � 1ut�1 �4�

Further, by virtue of Eqs. (2) and (3), the following composition rules hold true

�Aut�B��Cut�D� � �AC�ut��BD� �5�

and

�Aut�B��C
 D� � �ACBt� 
 D �A
 B��Cut�D� � A
 �CtBD� �6�

for every A, B, C, D $ Lin.
A further noteworthy property of the square tensor product is contained in the next

Proposition 2.1. The eigenvalues of A ut�B are the n2 numbers lalb where a, b=1, . . . , n and la(lb) are
the eigenvalues of A(B). The relevant eigenvectors are given by ea
 eb where ea(eb) is the eigenvector of
A(B) associated with la(lb).

Proof 2.1. By invoking Eq. (3) it follows that

�Aut�B��ea 
 eb� � A�ea 
 eb�Bt � �Aea� 
 �Beb� � lalb�ea 
 eb� a, b � 1, . . . , n

so that ea
 eb is an eigenvector of A ut�B having lalb as associated eigenvalue.
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3. Existence and uniqueness of the solution

The issue concerning the existence and the uniqueness of the solution of Eq. (1) can be addressed by
invoking the result reported in Gantmacher (1977) on the solvability of the more general tensor
equation in the unknown X

AX� XB � H �7�

where A, B, H and X $ Lin.
We can thus state that

Proposition 3.1. The tensor Eq. (1) admits a unique solution if and only if A and ÿA have no
eigenvalues in common.

The proof of the previous proposition is rather complicated and it is based on the properties of the
Jordan normal form of a tensor. On the contrary we shall provide a simpler proof of a result, equivalent
to Proposition 3.1, which holds under the additional assumption of a symmetric tensor A since this is
the most frequent case in the applications.

Proposition 3.2. Let A be symmetric. The tensor Eq. (1) admits a unique solution if and only if A is
nonsingular and it does not have two eigenvalues equal and opposite in sign.

Proof 3.2. Uniqueness of X is ensured if the homogeneous equation

AX� XA � 0 �8�

has only the trivial solution X=0.

Proof of the su�ciency is similar to the one which can be found in Gurtin's book (Gurtin, 1981) on
the derivative of the square root and it is here reported to make the presentation self-contained.

Denoting by l an eigenvalue of A and by e the relevant eigenvector it follows that

AXe� XAe � AXe� lXe � O

or equivalently

AXe � ÿlXe

Hence, if Xe$O, ÿl is an eigenvalue of A. Since this case is ruled out by hypothesis, we conclude
that Xe=O for every eigenvector e of A. By the spectral theorem (Halmos, 1958) there is a basis for N
of eigenvectors of A so that X=0.

Let us now turn to the only if part of our proposition. We proceed per absurdum.
Assume that Ker A is not empty and that e $Ker A. Setting X=e
 e we should have

A�e
 e� � �e
 e�A � �Ae� 
 e� e
 �Ae� � 0

since Ae=O. We thus infer that A must necessarily be nonsingular.
Let us now suppose that A has two eigenvectors, say e2 and e3, and that the associated eigenvalues

are opposite in sign
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Ae2 � le2; Ae3 � ÿle3

Setting X=e2
 e3+e3
 e2, Eq. (8) becomes

�Ae2� 
 e3 � �Ae3� 
 e2 � e2 
 �Ae3� � e3 
 �Ae2� � 0

once again in contrast with the hypothesis that Eq. (8) has only the trivial solution.
This completes the proof.

Remark 3.1. An alternative proof of the previous proposition hinges on the de®nition of the fourth-
order tensor A: Lin4 Lin de®ned by

A: � Aut�1� 1ut�A �9�

which allows one to rewrite Eq. (1) in the equivalent form

AX� XA � H$ AX � H �10�

We can thus state that Eq. (1) has a unique solution if and only if A is nonsingular or, equivalently,
if all the eigenvalues of A are di�erent from zero. By virtue of Proposition 2.1 this is exactly what is
stated in Proposition 3.2.

The condition on the eigenvalues of A contained in the statement of Proposition 3.2, can be expressed
more conveniently in terms of the principal invariants of A. Actually, it can be shown, see formula
(3.11) of Scheidler (1994), that

IAIIA ÿ IIIA � �l1 � l2��l2 � l3��l3 � l1�

where l1, l2 and l3 are the eigenvalues of A and

IA � trA, IIA � 1
2 ��trA�2 ÿ tr�A2��, IIIA � det A

its principal invariants. We can then state

Proposition 3.3. The tensor Eq. (1) admits a unique solution if and only if

IIIA 6� 0 and IAIIA ÿ IIIA 6� 0 �11�

More elaborate results on the solvability of Eq. (1) in the case of a generic A, even not real, can be
found e.g. in Scheidler (1994).

4. Three-dimensional solutions for an arbitrary H

Let us assume that the symmetric tensor A ful®lls the conditions reported in the Proposition 3.2. The
unique solution of the tensor Eq. (1) can then be obtained by inverting the fourth-order tensor
A=A ut�1+1 ut�A. In order to ®nd out an explicit expression for Aÿ1 we proceed as follows.
Notice that the solution of Eq. (1) for H=1 is trivially X=Aÿ1/2. The tensor Aÿ1 should then have a

form such that Aÿ11=Aÿ1/2.

L. Rosati / International Journal of Solids and Structures 37 (2000) 3457±34773462



Since dim Lin=9 a candidate expression for Aÿ1 is

Aÿ1 �
X9
i�1

aiA
bi ut�Agi �12�

where ai are arbitrary isotropic scalar functions of A such that
P9

i�1 ai=1/2 and bi, gi are arbitrary
integers ful®lling the conditions bi+gi=ÿ1 and bi$bj, gi$gj if i$j.

The tensor Aÿ1 can however be given a simpler expression through the Cayley±Hamilton theorem
according to which any tensor A satis®es its own characteristic equation

A3 ÿ IAA2 � IIAAÿ IIIA1 � 0 �13�

Hence, by repeated recourse to the previous relation, an integer power Ak of the tensor A can be
uniquely expressed as a function of the tensors Ap, Aq and Ar where k$p$q$r.

The most natural choice is clearly p = 0, q = 1 and r = 2 so that we are led to assume for Aÿ1 the
following expression

Aÿ1 � a�1ut�1� � b�Aut�1� � c�1ut�A� � d�Aut�A� � e�A2ut�1� � f �1ut�A2� � g�A2ut�A� � h�Aut�A2�

� i�A2ut�A2� �14�

where a, b, . . . ,i are isotropic scalar functions of A.
Further, one expects that the symmetric structure of A has to entail a similar property for Aÿ1, i.e.

b=c, e=f and g=h. In order to evaluate the coe�cients a, . . . ,i in Eq. (14) we notice that, by de®nition,
it must be

Aÿ1A � AAÿ1 � I � 1ut�1 �15�

or explicitly

fAut�1� 1ut�Agfa�1ut�1� � b�Aut�1� � c�1ut�A� � d�Aut�A� � e�A2ut�1� � f �1ut�A2� � g�A2ut�A�

� h�Aut�A2� � i�A2ut�A2�g � 1ut�1

Carrying out the products and recalling the composition rule (5) we obtain

a�Aut�1� 1ut�A� � b�A2ut�1� Aut�A� � c�Aut�A� 1ut�A2� � d�A2ut�A� Aut�A2� � e�A3ut�1� A2ut�A�

� f �Aut�A2 � 1ut�A3� � g�A3ut�A� A2ut�A2� � h�A2ut�A2 � Aut�A3� � i�A3ut�A2 � A2ut�A3� � 1ut�1

Substituting in the previous formula the expression of A3 resulting from Eq. (13) and grouping
together the coe�cients multiplying in turn the square tensor products B1=1 ut�1, B2=A ut�1, B3=1 ut�A,
B4=A ut�A, B5=A2 ut�1, B6=1 ut�A2, B7=A2 ut�A, B8=A ut�A2, B9=A2 ut�A2, the condition (15) is ful®lled
if and only if it turns out to be

1: IIIAe� IIIAf � 1
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2: aÿ IIAe� IIIAh � 0

3: aÿ IIAf� IIIAg � 0

4: b� cÿ IIAgÿ IIAh � 0

5: b� IAe� IIIAi � 0

6: c� IAf� IIIAi � 0

7: d� e� IAgÿ IIAi � 0

8: d� f� IAhÿ IIAi � 0

9: g� h� 2IAi � 0 �16�

Subtracting no. 3 from no. 2 and no. 8 from no. 7 we arrive at

ÿIIA�eÿ f � � IIIA�hÿ g� � 0

�eÿ f � ÿ IA�hÿ g� � 0

from which we infer

�IAIIA ÿ IIIA��hÿ g� � 0

Recalling that (IAIIAÿIIA)$0, cf Eq. (11), we conclude from the previous relations that

h � g e � f �17�

Further, since the di�erence between nos. 5 and 6 of Eq. (16) yields

bÿ c� IA�eÿ f � � 0

it is also true that

b � c �18�

as we anticipated.
By virtue of Eqs. (17) and (18), the relations (16) become

1: 2IIIAe � 1

2: aÿ IIAe� IIIAh � 0
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4: 2bÿ 2IIAh � 0

5: b� IAe� IIIAi � 0

7: d� e� IAhÿ IIAi � 0

9: 2h� 2IAi � 0

We thus get from no. 1

e � 1

2IIIA,

and, from nos. 4 and 9, b=IIAh and i=ÿh/IA respectively. Substituting the previous relations in no. 5
we obtain

h � ÿ I 2
A

2�IAIIA ÿ IIIA�IIIA

so that

b � ÿ I 2
AIIA

2�IAIIA ÿ IIIA�IIIA
i � IA

2�IAIIA ÿ IIIA�IIIA

Finally, we infer from no. 2

a � �IAIIA ÿ IIIA�IIA � I 2
AIIIA

2�IAIIA ÿ IIIA�IIIA

and from no. 7

d � I 3
A � IIIA

2�IAIIA ÿ IIIA�IIIA

In conclusion, setting k=IAIIAÿIIIA we can write

2kIIIAAÿ1 � ��IAIIA ÿ IIIA�IIA � I 2
AIIIA��1ut�1� ÿ I 2

AIIA�Aut�1� 1ut�A� � �I 3
A � IIIA��Aut�A�

� �IAIIA ÿ IIIA��A2ut�1� 1ut�A2� ÿ I 2
A�A2ut�A� Aut�A2� � IA�A2ut�A2�

so that the solution of Eq. (1) is given by

2kIIIAX � ��IAIIA ÿ IIIA�IIA � I 2
AIIIA�Hÿ I 2

AIIA�AH�HA� � �I 3
A � IIIA�AHA

� �IAIIA ÿ IIIA��A2H�HA2� ÿ I 2
A�A2HA� AHA2� � IA�A2HA2�

�19�

The previous expression coincides with the direct formula (2.3) of Hoger and Carlson (1984) and

L. Rosati / International Journal of Solids and Structures 37 (2000) 3457±3477 3465



formula (5.20) of Scheidler (1994) which employed a di�erent derivation. In addition, Eq. (19) could be
deduced by specializing to the case n = dim V = 3 the solution of the tensor equation AtX+XA=H
obtained by Smith (1966) for an arbitrary n.

In the author's opinion the proposed approach entails some advantages with respect to the solution
strategies developed in the past.

First, only simple algebraic calculations are really needed to ®nd the solution of (1) once a
representation formula for X, or equivalently for Aÿ1, is assigned. In this respect we recall that Sidoro�
(1978) pointed out that X is an isotropic function of A and H, linear in H. Hence a representation
formula for X can always be provided by resorting to well-known results on the isotropic functions of
symmetric or skew-symmetric tensors, see e.g. Smith (1971), Spencer (1971), Boehler (1977) and
Korsgaard (1990).

Further, by properly modifying the general expression (14) of Aÿ1 it is possible to decide from the
very beginning the structure of the solution X which is looked for. This can be done, for instance, by
changing in Eq. (14) some, or all, the terms A2 with the equivalent expression as function of Aÿ1

resulting from the Cayley±Hamilton theorem. The claimed procedure will be detailed in the next
subsection.

4.1. Alternative three-dimensional solutions for an arbitrary H

It has been emphasized in the previous section that the expression (14) of Aÿ1 is not the only possible
one. To clarify this point let us re-write Eq. (14) by taking into account the symmetric structure of Aÿ1

Aÿ1 � a1�1ut�1� � a2�Aut�1� 1ut�A� � a3�Aut�A� � a4�A2ut�1� 1ut�A2� � a5�A2ut�A� Aut�A2�

� a6�A2ut�A2� �20�

Observe now that we can decide to convert all the terms A2 appearing in the previous formula to the
equivalent ones expressed as function of 1, A and Aÿ1. Actually, we derive from Eq. (13)

A2 � IAAÿ IIA1� IIIAAÿ1 �21�

which yields, upon substitution in Eq. (20) and rearranging

Aÿ1 � a�1ut�1� � b�Aut�1� 1ut�A� � c�Aÿ1ut�1� 1ut�Aÿ1� � d�Aut�A� � e�Aÿ1ut�A� Aut�Aÿ1�

� f �Aÿ1ut�Aÿ1� �22�

We are thus led to an alternative expression of Aÿ1 equivalent to Eq. (14).
The coe�cients a,b, . . . ,f in Eq. (22) can be easily found by exploiting the procedure illustrated in the

previous paragraph. By imposing the condition (15) we must now require that

�Aut�1� 1ut�A�fa�1ut�1� � b�Aut�1� 1ut�A� � c�Aÿ1ut�1� 1ut�Aÿ1� � d�Aut�A� � e�Aÿ1ut�A� Aut�Aÿ1�

� f �Aÿ1ut�Aÿ1�g � 1ut�1

Developing the products and invoking Eq. (21) we derive the following linear algebraic system in the
unknowns a,b, . . . , f
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1: ÿ 2IIAb� 2c � 1

2: a� IAbÿ IIAd� e � 0

3: 2b� 2IAd � 0

4: IIIAbÿ IIAe� f � 0

5: c� IIIAd� IAe � 0

6: 2IIIAe � 0 �23�

where each one of the previous expressions collects in turn the coe�cients of the tensors B1=1 ut�1,
B2=A ut�1+1 ut�A, B3=A ut�A, B4=Aÿ1 ut�1+1 ut�Aÿ1, B5=Aÿ1 ut�A+A ut�Aÿ1, B6=Aÿ1 ut�Aÿ1.

The solution of Eq. (23) is

a � I 2
A � IIA

2�IAIIA ÿ IIIA�

b � ÿ IA

2�IAIIA ÿ IIIA�

c � ÿ IIIA

2�IAIIA ÿ IIIA�

d � 1

2�IAIIA ÿ IIIA�

e � 0

f � IAIIIA

2�IAIIA ÿ IIIA�

so that, having set k=IAIIAÿIIIA, we obtain

2kAÿ1 � �I 2
A � IIA��1ut�1� ÿ IA�Aut�1� 1ut�A� ÿ IIIA�Aÿ1ut�1� 1ut�Aÿ1� � Aut�A� IAIIIA�Aÿ1ut�Aÿ1�

The solution of Eq. (1) is thus given by

2kX � �I 2
A � IIA�Hÿ IA�AH�HA� ÿ IIIA�Aÿ1H�HAÿ1� � AHA� IAIIIAAÿ1HAÿ1 �24�

which coincides with formula (5.17)1 of Scheidler (1994) and formula (1.15) of Ting (1996). The previous
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formula was also stated, without proof, by Leonov (1976) and Stickfort and Wegener (1988) for a
symmetric and positive de®nite A and H $ Sym.

Using the de®nition of cofactor AÃ of A as the unique element of Lin such that

ÃAA
t � At ÃA � IIIA1

formula (5.18)1 of Scheidler (1994) and formula (1.14) of Ting (1996) can also be arrived at.
In order to show the e�ectiveness of the proposed approach we now derive a third expression of the

solution X of Eq. (1). To this aim let us modify in the expression of Eq. (20) only the term A2 ut�A2 by
expressing A2 as function of 1, A and Aÿ1 through Eq. (21).

We thus assume for Aÿ1 the following representation formula

Aÿ1 � a�1ut�1� � b�Aut�1� 1ut�A� � c�A2ut�1� 1ut�A2� � d�Aut�A� � e�A2ut�A� Aut�A2�

� f �Aÿ1ut�Aÿ1� �25�

By imposing the condition (15) it turns out to be

�Aut�1� 1ut�A�fa�1ut�1� � b�Aut�1� 1ut�A� � c�A2ut�1� 1ut�A2� � d�Aut�A� � e�A2ut�A� Aut�A2�

� f �Aÿ1ut�Aÿ1�g � 1ut�1

Using Eq. (13) it is immediate to verify that the unknowns a,b, . . . ,f must ful®ll the linear con
ditions

1: 2IIIAc� 2
IIA

IIIA
f � 1

2: aÿ IIAc� IIIAeÿ IA

IIIA
f � 0

3: 2bÿ 2IIAe � 0

4: b� IAc� 1

IIIA
f � 0

5: c� d� IAe � 0

6: 2e � 0 �26�

representing in turn the coe�cients of the fourth-order tensors B1=1 ut�1, B2=A ut�1+1 ut�A, B3=A ut�A,
B4=A2 ut�1+1 ut�A2, B5=A2 ut�A+A ut�A2, B6=A2 ut�A2.

The solution of Eq. (26) is
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a � I 2
A ÿ IIA

2�IAIIA ÿ IIIA�

b � 0

c � ÿ 1

2�IAIIA ÿ IIIA�

d � 1

2�IAIIA ÿ IIIA�

e � 0

f � IAIIIA

2�IAIIA ÿ IIIA�

so that

2kAÿ1 � �I 2
A ÿ IIA��1ut�1� ÿ �A2ut�1� 1ut�A2� � Aut�A� IAIIIA�Aÿ1ut�Aÿ1�

and the solution of Eq. (1) is given by

2kX � �I 2
A ÿ IIA�Hÿ �A2H�HA2� � AHA� IAIIIAAÿ1HAÿ1 �27�

It coincides with formula (5.19)1 of Scheidler (1994) and it had been ®rst derived by Jameson (1968).
It is apparent from the previous developments that further solutions of the tensor Eq. (1) can be

obtained by modifying in Eq. (20), separately, each one of the pairs (A2 ut�1+1 ut�A2) and
(A2 ut�A+A ut�A2), as already done for A2 ut�A2 to derive Eq. (22). Moreover we can arbitrarily modify
two of the previous three pairs of square tensor products by expressing A2 as function of 1, A and Aÿ1

through Eq. (21).
Alternatively we can even start from a di�erent expression of Eq. (20) by assuming as generators of

Aÿ1, as an example, the square tensor products of Aÿ2, 1 and A2 or the square tensor products of any
triplet of integer powers of A.

This matter shall not be pursued any further since we are not interested in making a list of the
possible solutions of Eq. (1) but, rather, to illustrate the general approach which allows one to
systematically generate both the solutions reported in the literature and some new ones.

For this reason we shall present in the following sections the solutions of Eq. (1) for H symmetric and
skew.

5. Three-dimensional solution for a symmetric H

It is apparent that the expression of X provided by Eq. (19), or equivalently by Eqs. (24) and (27),
can also be considered as direct solution of Eq. (1) for H symmetric. Within the framework of the
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proposed approach, based upon the derivation of representation formulas for Aÿ1 this can be motivated
as follows.

Denoting by Sym (Skw) the subspace of all symmetric (skew) tensors of Lin we recall that

Lin � Sym� Skw

where dim Sym=6 and dim Skw=3.
Further, it is known that the solution X of Eq. (1) is symmetric if and only if H $ Sym. Hence the

representation formula for Aÿ1=(A ut�1+1 ut�A)ÿ1 is still given by Eq. (12), where the sum is now
restricted only to six elements, and it must necessarily have a symmetric structure such as the ones
reported in formulas (19), (24) or (27) since Aÿ1H=X.

The fact that the same expression of X were obtained for H $ Sym and H $ Lin was also observed by
Hoger and Carlson (1984) by using di�erent arguments. Actually, they ®rst determined the solution (19)
for a symmetric H and they subsequently veri®ed, by direct substitution, that the same solution was still
valid for a generic H.

However, it has been noticed by Scheidler (1994) that no apparent simpli®cation of the formula (19)
is gained when H is symmetric or skew-symmetric. This is particularly disappointing for H skew since
the solution obtained in this case by Sidoro� (1978) and Guo (1984), adopting an indirect approach, is
by far simpler than the one derivable from Eq. (19). Only by using Rivlin's identities (Rivlin, 1955) for
tensor polynomials in two variables were Hoger and Carlson (1984) able to convert Eq. (19) to the
solution obtained by Sidoro� (1978) and Guo (1984).

This section is thus devoted to deriving direct solutions of Eq. (1) for H symmetric without
specializing the solution (19) obtained for an arbitrary H. The case of H skew will be dealt with in the
next section.

As Sidoro� (1978) ®rst pointed out, the solution X of Eq. (1) is an isotropic function of A and H,
linear in H. We can then provide a further expression of X by exploiting the representation theorems for
tensor-valued isotropic functions of symmetric tensors (Truesdell and Noll, 1965), thus following the
path ®rst traced by Sidoro�.

Anticipating the ®nal result we shall prove that this approach leads to the solution (2.7) which Hoger
and Carlson (1984) derived by modifying Eq. (19) through Rivlin's identities (Rivlin, 1955) for tensor
polynomials in two variables.

This proves the equivalence between Sidoro�'s approach and the one exploited by Hoger and
Carlson, a circumstance only claimed in their paper.

Let us recall that the representation theorem for isotropic tensorial functions G of two sym-metric
tensors D and E states that G can be expressed as (Truesdell and Noll, 1965)

G�D, E� � c01� c1D� c2E� c3D
2 � c4E

2 � c5�DE� ED� � c6�D2E� ED2� � c7�E2D� DE2�

� c8�D2E2 � E2D2�

where the coe�cients ci, i=0, . . . ,8 are isotropic scalar functions of D and E

ci � ~ci�trD, trD2, trD3, trE, trE2, trE3, tr�DE�, tr�D2E�, tr�DE2�, tr�D2E2��

Accordingly, since the solution X of Eq. (1) is an isotropic function of A and H, linear in H, it will
admit the representation
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X � aH� b�AH�HA� � c�A2H�HA2� � d00�trH�1� d01�trH�A� d02�trH�A2 � d10�trHA�1

� d11�trHA�A� d12�trHA�A2 � d20�trHA2�1� d21�trHA2�A� d22�trHA2�A2

The symmetry of X guarantees that dab=dba, a,b $ {0, 1, 2} so that Aÿ1 can be given the following
representation

Aÿ1 � a�1ut�1� � b�Aut�1� 1ut�A� � c�A2ut�1� 1ut�A2� � d�1
 1� � e�A
 1� 1
 A�

� f �A2 
 1� 1
 A2� � g�A
 A� � h�A2 
 A� A
 A2� � i�A2 
 A2�
�28�

The redundancy in the number of tensors appearing in the previous formula with respect to (20) will
be dealt with afterwards.

We have now to determine the coe�cients a,b, . . . ,i of Eq. (28) so as to enforce the condition (15)
which is re-written for convenience

AAÿ1 � Aÿ1A � I � 1ut�1

Recalling the composition rules, Eq. (6), we get from the ®rst one of the previous conditions

a�Aut�1� 1ut�A� � b��A2ut�1� 1ut�A2� � 2Aut�A� � c��A3ut�1� 1ut�A3� � �A2ut�A� Aut�A2�� � 2d�A
 1�

� 2e�A2 
 1� A
 A� � 2f �A3 
 1� A
 A2� � 2g�A2 
 A� � 2h�A3 
 A� A2 
 A2� � 2i�A3 
 A2�

� 1ut�1

Enforcing the condition Aÿ1A=I and combining the resulting expression with the previous one we
®nally obtain, by the Cayley±Hamilton Theorem, Eq. (13)

2IIIAc�1ut�1� � �aÿ IIAc��Aut�1� 1ut�A� � �b� IAc��A2ut�1� 1ut�A2� � 2b�Aut�A�

�c�A2ut�A� Aut�A2� � 2IIIAf �1
 1� � �dÿ IIAf� IIIAh��A
 1� 1
 A� � �e� IAf� IIIAi �

� �A2 
 1� 1
 A2� � 2�eÿ IIAh��A
 A� � � f� g� IAhÿ IIAi ��A2 
 A� A
 A2�

� 2�h� IAi ��A2 
 A2� � 1ut�1

�29�

It is immediate to realize that enforcement of the condition (15), represented by the previous
expression, leads to an overdetermined set of linear conditions imposed on the nine unknowns a,b, . . . , i.

Actually we have eleven conditions to ful®ll, namely the ones concerning the ®ve square tensor
products 1 ut�1, (A ut�1+1 ut�A), (A2 ut�1+1 ut�A2), A ut�A, (A2 ut�A+A ut�A2) plus the ones pertaining
to the six tensor products 1 
 1, (A 
 1+1 
 A), (A2 
 1+1 
 A2), A 
 A, (A2 
 A+A 
 A2)
and A2
A2.

However Rivlin's identities (Rivlin, 1955) for tensor polynomials can be used to establish linear
relations among some of the previous eleven fourth-order tensors. In particular formulas (4.25) and
(4.26) of Rivlin's paper can be expressed in tensor notation as follows

�A2ut�A� Aut�A2� � IA�Aut�A� � �A2 
 A� A
 A2� ÿ IA�A
 A� � IIIA�1
 1� ÿ IIIA�1ut�1� �30�

L. Rosati / International Journal of Solids and Structures 37 (2000) 3457±3477 3471



and

�A2ut�1� 1ut�A2� � ÿAut�A� �A2 
 1� 1
 A2� � IA�Aut�1� 1ut�A� ÿ IA�A
 1� 1
 A�

� A
 A� IIA�1
 1� ÿ IIA�1ut�1�
�31�

By virtue of the previous identities, Eq. (29) becomes

�2cÿ IIA�b� IAc� ÿ IIIAc��1ut�1� � �aÿ IIAc� IA�b� IAc���Aut�1� 1ut�A� � �ÿ�b� IAc�

�2b� IAc��Aut�A� � �IIA�b� IAc� � IIIAc� 2IIIAf ��1
 1� � �ÿ�b� IAc� � dÿ IIAf� IIIAh�

� �A
 1� 1
 A� � �b� 2eÿ 2IIAh��A
 A� � �b� IAc� e� IAf� IIIAi ��A2 
 1

� 1
 A2� � �c� f� g� IAhÿ IIAi ��A2 
 A� A
 A2� � 2�h� IAi ��A2 
 A2� � 1ut�1

�32�

from which we infer

a � I 2
A ÿ IIA

IAIIA ÿ IIIA

b � 0

c � ÿ 1

IAIIA ÿ IIIA

d � IAII
2
A � IIAIIIA ÿ I 2

AIIIA

2�IAIIA ÿ IIIA�IIIA

e � ÿ I 2
AIIA

2�IAIIA ÿ IIIA�IIIA

f � IAIIA � IIIA

2�IAIIA ÿ IIIA�IIIA

g � I 3
AIIIA

2�IAIIA ÿ IIIA�IIIA

h � ÿ I 2
A

2�IAIIA ÿ IIIA�IIIA
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i � IA

2�IAIIA ÿ IIIA�IIIA

According to Eq. (28) and setting k=IAIIAÿIIIA, the solution of Eq. (1) becomes

2kIIIAX � 2�I 2
A ÿ IIA�IIIAHÿ 2IIIA�A2H�HA2� � �IAII

2
A � IIAIIIA ÿ I 2

AIIIA��trH�1

ÿ I 2
AIIA��trH�A� �trHA�1� � �IAIIA � IIIA��trH�A2 � �trHA2�1� � I 3

AIIIA�trHA�A

ÿ I 2
A��trHA�A2 � �trHA2�A� � IA�trHA2�A2 �33�

and coincides with formula (2.7) obtained by Hoger and Carlson (1984).
Further expressions of X can however be obtained by combining Eq. (28) with one or both of the

identities (30) and (31) and, eventually, with the identity

A2ut�A2 � IIA�Aut�A� � �A2 
 A2� ÿ IIIA�Aut�1� 1ut�A� ÿ IIA�A
 A� � IIIA�A
 1� 1
 A� �34�

stemming from the formula (4.26) of Rivlin's paper (1955).

6. Three-dimensional solutions for a skew-symmetric H

On the basis of the considerations developed in the previous section it is apparent that the solution of
Eq. (1) for H skew can be more e�ectively looked for by providing a direct representation formula for X
rather than specializing the general solution (19).

Accordingly, invoking the representation theorem for skew-symmetric tensor-valued isotropic
functions of symmetric and skew tensors (Smith, 1971), we get

X � a1H� a2�AH�HA� � a3�A2H�HA2�

so that

Aÿ1 � a1�1ut�1� � a2�Aut�1� 1ut�A� � a3�A2ut�1� 1ut�A2� �35�
We shall ®rst derive an expression for the solution of Eq. (1) which, at the best of the author's

knowledge, has not yet been reported in the literature. To this end we make use of Eq. (21) to modify
Eq. (35) so as to represent Aÿ1 in the form

Aÿ1 � a�1ut�1� � b�Aut�1� 1ut�A� � c�Aÿ1ut�1� 1ut�Aÿ1� �36�
For future reference we also need to specialize the identities (30) and (31). Observing that

tr�AkH� � 0 k � 0, 1, 2

since A is symmetric and H is skew, we obtain

�A2ut�A� Aut�A2� � IA�Aut�A� ÿ IIIA�1ut�1� �37�

and
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�A2ut�1� 1ut�A2� � ÿ�Aut�A� � IA�Aut�1� 1ut�A� ÿ IIA�1ut�1� �38�
Finally, ful®llment of Eq. (15) starting from Eq. (36) and use of Eq. (38) provide the following relation

a�Aut�1� 1ut�A� � b�IA�Aut�1� 1ut�A� ÿ IIA�1ut�1� � Aut�A� � c�2�1ut�1� � �Aÿ1ut�A� Aut�Aÿ1��

� 1ut�1 �39�

Since the previous expression determines four linear relations among the three unknowns a, b and c,
some further manipulation is needed. Namely we substitute in Eq. (39) the relation

Aÿ1 � 1

IIIA
�A2 ÿ IAA� IIA1� �40�

resulting from Eq. (21) to obtain�
a� IAb� IIA

IIIA
c

�
�Aut�1� 1ut�A� � �cÿ IIAb��1ut�1� �

�
bÿ IA

IIIA
c

�
�Aut�A� � 1ut�1

The previous relation holds if and only if

a � I 2
A � IIA

IAIIA ÿ IIIA
b � ÿ IA

IAIIA ÿ IIIA
c � ÿ IIIA

IAIIA ÿ IIIA

so that

�IAIIA ÿ IIIA�X � �I 2
A � IIA�Hÿ IA�AH�HA� ÿ IIIA�Aÿ1H�HAÿ1� �41�

It represents an original solution of Eq. (1) for skew-symmetric H.

6.1. Derivation of available three-dimensional solutions for a skew-symmetric H

We now present some of the solutions already available in the literature and we brie¯y outline how
they can be arrived at by following the approach detailed in the previous paragraphs.

First the combined use of Eqs. (37) and (38) in the expression resulting from Eq. (35) by enforcing the
condition (15) provides

�IAIIA ÿ IIIA�X � �I 2
A ÿ IIA�Hÿ �A2H�HA2� �42�

which represents the solution by Sidoro� (1978) and Guo (1984).
Further, by virtue of Eq. (38), the expression (35) of Aÿ1 can be modi®ed to provide the following

representation

Aÿ1 � a�1ut�1� � b�Aut�1� 1ut�A� � c�Aut�A� �43�
Enforcement of Eq. (15) and use of Eq. (37) yields then

�IAIIA ÿ IIIA�X � I 2
AHÿ IA�AH�HA� � AHA �44�

which coincides with formula (5.1)1 of Scheidler (1994).
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7. Two-dimensional solutions for an arbitrary H

The solution of the tensor equation

AX� XA � H �45�

for bidimensional problems can be achieved by adopting the same approach which has been illustrated
in the previous sections. However the resulting expressions of X are quite di�erent with respect to the
corresponding three-dimensional ones so that their comprehensive presentation can be useful.

In particular we present an original solution of Eq. (45) and, for completeness, we shall also allude to
the way in which further solutions reported in the literature can be obtained.

Let us ®rst notice that the specialization of Proposition 3.2 to the present context amounts to state
that Eq. (45) has a unique solution if and only if the two invariants

IA � trA IIA � det A

are di�erent from zero.
Following the same path of reasoning outlined at the beginning of Section 4, we are now led to

assume for Aÿ1 the following expression

Aÿ1 � a1�1ut�1� � a2�Aut�1� 1ut�A� � a3�Aut�A� �46�

where a1, a2, and a3 are isotropic scalar functions of A.
Recalling that the Cayley±Hamilton theorem for two-dimensional tensors reads

A2 ÿ IAA� IIA1 � 0 �47�

we can express A as function of 1 and A2 in Eq. (46) to obtain

Aÿ1 � a�1ut�1� � b�A2ut�1� 1ut�A2� � c�A2ut�A2� �48�

Ful®llment of Eq. (15) yields now

a � I 4
A � II 2

A ÿ I 2
AIIA

2I 3
AIIA

b � ÿI
2
A ÿ IIA

2I 3
AIIA

c � 1

2I 3
AIIA

and hence

2I 3
AIIAX � �I 4

A � II 2
A ÿ I 2

AIIA�Hÿ �I 2
A ÿ IIA��A2H�HA2� � A2HA2 �49�

an expression which appears to be new in the literature.
A further solution of Eq. (45)

�2IAIIA�X � �I 2
A � IIA�Hÿ IA�AH�HA� � AHA �50�

is due to Hoger and Carlson (1984). It can be obtained by enforcing Eq. (15) starting from the
expression (46) for Aÿ1 and using the Cayley±Hamilton theorem, Eq. (47), to express A2 as function of
1 and A.

Finally, the solution reported by Ting (1996) in formula (6.4) of his paper
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2IAX � H� IIA�Aÿ1HAÿ1� �51�

can be derived starting from the following representation of Aÿ1

Aÿ1 � a�1ut�1� � b�Aÿ1ut�1� 1ut�Aÿ1� � c�Aÿ1ut�Aÿ1� �52�

which is obtained from Eq. (46) by expressing A as function of 1 and Aÿ1 through Eq. (47).

7.1. Two-dimensional solutions for H symmetric or skew

In perfect analogy with the analysis developed in Section 5, a further solution of Eq. (45) can be
derived by resorting to the representation theorems for bidimensional tensor-valued isotropic functions
of symmetric tensors (Korsgaard, 1990).

Actually, the solution X of Eq. (45) can be given the following expression

X � aH� b�trH�1� c��trHA�1� �trH�A� � d�trHA�A �53�

since it is an isotropic symmetric function of A and H, linear in H. The following representation for
Aÿ1 is thus entailed

Aÿ1 � a�1ut�1� � b�1
 1� � c�A
 1� 1
 A� � d�A
 A� �54�

Overdeterminacy in the set of linear conditions obtained by enforcing Eq. (15) can be dealt with by
invoking Rivlin's identity for bidimensional tensor polynomials of two variables, see e.g. formula 4.7 of
his paper,

Aut�1� 1ut�A � �A
 1� 1
 A� � IA�1ut�1� ÿ IA�1
 1� �55�

The ®nal result is

a � 1

IA
b � I 2

A ÿ IIA

2IAIIA
c � ÿ 1

2IIA
d � 1

2IAIIA

and the relevant expression for X

�2IAIIA�X � 2IIAH� �I 2
A ÿ IIA��trH�1ÿ IA��trHA�1� �trH�A� � �trHA�A �56�

coincides with the formula reported by Hoger and Carlson (1984).
The solution of Eq. (45) for H skew can be obtained by specializing the previous result taking into

account the fact that trH=tr(HA)=0. We thus get

IAX � H

a result which could be equivalently derived by invoking the representation theorem for bidimensional
tensor-valued isotropic functions of skew-symmetric tensors (Korsgaard, 1990).
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8. Conclusions

The analysis developed in the previous sections has allowed us to obtain new expressions for the
solution of Eq. (1), both in the three- and in the two-dimensional case, as well as to provide simpler
derivations of the solutions already available in the literature.

The solution of more general linear tensor equations arising in several branches of applied physics
and engineering will be addressed in forthcoming papers.
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